Why is it so hard to design ligands to bind to proteins?

George M. Whitesides Harvard University Department of Chemistry and Chemical Biology gwhitesides@gmwgroup.harvard.edu

Molecular Recognition

- Non-covalent chemistry
- Ubiquitous
 - Protein-Ligand; Protein-Protein; Channels; Enzymatic
 Catalysis (ground/transition state) etc
- G, H, and S are all important
- Chemistry has good intuition about H; poor intuition about S

Hit / Lead to Drug

Risk/Time Discounted Cash Flow

Why can't we design drugs?

- •Drugs are much more complicated than ligands.
- •Ligands are hard enough.
- •Biology is all molecular recognition and networks.

Rational Drug Design: Gene to Drug

Rational Ligand Design: Protein Structure to Lead

Why is this so hard to predict?

 $K_d = e^{-\Delta G^0 / RT} = e^{-(\Delta H^0 - T\Delta S^0) / RT}$

What Has Changed?

x-ray crystallography

computational modeling

http://www.avacta.com/analytical/isothermal_titration_calorimeter.htm http://chemistry.gsu.edu/faculty/Huang/new_page_3.htm http://www.theage.com.au/news/technology/pc-trumps-wwii-codecracking-computer/2007/11/17/1195321610123.html

ITC to Measure Enthalpy (and Infer Entropy)

Van't Hoff analysis

$$\ln K_d = \frac{\Delta H^{\circ}}{R} \left(\frac{1}{T}\right) - \frac{\Delta S^{\circ}}{R}$$

- $-\Delta H^{\circ}$ and ΔS° both vary with T
- Protein structure is dependent on T
- Water structure depends on T
- Isothermal titration calorimetry (ITC)
 - Direct measurement of heat released upon binding
 - Constant temperature
 - Commercial instruments are available
 - Can estimate ΔC_p from variation of ΔH° with T

Representative Data from ITC

Bovine Carbonic Anhydrase II

Limitations: ITC

- Requires significant protein
- Ligand must be soluble
- Obviously limited when q is small

Molecular Recognition in Water: Protein-Ligand Interactions

- G = H TS
- The Hydrophobic Effect
- Protein Plasticity
- "Induced Fit" (H and S)
- "Sloppy fit," rather than "lock-and-key"
- Other Interactions: Charge Networks
- Entropy/enthalpy (H/S) compensation
- Water, Solvation, and Entropy
- Association of OH⁻ and non-polar surface

Carbonic Anhydrase: A Model Protein

- Commonly used model protein for physical-organic studies
- Stable $(T_m = 65 \degree C)$
- Monomeric, 30 kDa
- No disulfide bonds
- Structure is dominated by 10 βsheets
- Zn(II)-OH cofactor in active site
- Function: CO₂ hydration
- Binding of sulfonamide inhibitors is well-characterized

The Position of Aryl Sulfonamide Ligands is Restricted by Binding to the Zn(II)

Water

- High polarity
- Structured, but how?
 - Hydrogen Bonding
- How does structure translate to entropy?
- High, temperature-dependent, dielectric constant [ε = f(T)]
- Small partial molar volume (\overline{V}_m)
- High surface tension. Free energy required to form a cavity in water:

 $\Delta \mathbf{G} = \boldsymbol{\gamma} \times \Delta \mathbf{A}$

where γ : surface tension

 $\Delta \textbf{A}$: change in surface area necessary to hold the solute

The Kauzmann-Tanford (KT) Hydrophobic Effect

Orientation of near-surface water?

- **Structure of ordered layer?**
- Structure of bulk water? (3 or 4 H-bonds?)

KT Model: Contact of Hydrophobic Surfaces Releases Structured Water--Dominated by Entropy

Hydrophobic Effect

Cavity Formation Models

Surface Tension Model: $\Delta G = \gamma x \Delta A$ where γ : surface tension, ΔA : change in surface area to hold the solute

Void Volume Aggregation Model: $\Delta G = T\Delta S$ of arranging many small void volume elements into a large volume

K. Dill and coworkers J. Phys. Chem. B 2002, 106, 521-533

Topography of the Hydrophobic Surface

Hydrophobic Effect – Enthalpy/Entropy Compensation

K. Dill and coworkers J. Phys. Chem. B 2002, 106, 521-533.

Molecular Recognition in Water: Protein-Ligand Interactions

Molecular Recognition in Water: Protein-Ligand Interactions, or water?

Molecular Recognition in Water: Protein-Ligand Interactions

- G = H TS
- The Hydrophobic Effect
- Protein Plasticity
- "Induced Fit" (H and S)
- "Sloppy fit," rather than "lock-and-key"
- Other Interactions: Charge Networks
- Entropy/enthalpy (H/S) compensation
- Water, Solvation, and Entropy
- Association of OH⁻ and non-polar surface

Our Experimental Strategy

- Use the simplest possible design
- Perturbation of the ligand (leave the protein = CA) constant
- Compare aliphatic and aromatic groups
- Compare "hydrophobicity" in binding to ligand, and in partitioning
- Test data for statistical significance
- Get X-ray structures for everything
- Compare with theory

Monocyclic aromatics have similar K_d

The "Benzo Addition" Strategy

 Classical physicalorganic perturbation method: examine a common modification that extends hydrophobic surface area

Increase the hydrophobic surface area of the ligand (benzo-extension)

"Benzo Addition:" Summary

- Dominated by *enthalpy*, not entropy
- Independent of aromatic/aliphatic.
 No "non-classical hydrophobic effect"

 Requires: a non-Kauzmann interpretation of the hydrophobic effect

KT predict free energy, but enthalpy and entropy make the opposite contribution

Heat Capacity: Compatible with Hydrophobic Effect

- Negative values of $\Delta Cp^{\circ} \Rightarrow$ hydrophobic effect/solvation changes
- ΔCp° is complicated
 - Opposite contributions from dehydration of polar and nonpolar (Privalov)
 - Protein structure (Sturtevant)
 - Burying water molecules (Connelly, Ladbury)
 - o Releasing water molecules

- Ligand Partitioning
- Free energy is the same as binding
- Entropy and Enthalpy are opposite to binding
- KT predicts partitioning

- "Hydrophobicity " of aryl sulfonamide ligands (buffer → octanol) and "hydrohobicity "(buffer → Protein active site) have the same value in free energy, but completely different mechanisms
- ...implies many "hydrophobic effects"?
- Entropy/enthalpy compensation?

Structure of the protein and the ligands is invariant

Few contacts between benzo and hydrophobic wall
Fused benzo ring makes few contacts with protein

Minimal contacts between fused ring and protein Most of the fused ring is solvent-exposed

1.3 Å

Ligand is highly solvent-exposed

Fused ring appears to affect crystallographic water positions

Hypothesis: observed thermodynamic effect for "hydrophobic binding" is solvent-mediated

- Water in cavities
 - Rossky, Lazaridis, Berne, Friesner
 - Free energy depends on the geometry of the cavity, polarity of the surface

- WaterMap [®] (Schrodinger)
 - explicit water MD
 - estimates ΔH and ΔS for water

Young, Abel, Kim, Berne, Friesner PNAS 2007

WaterMap predicts $-T\Delta\Delta S^{\circ} \approx 0$ cal mol⁻¹ $\Delta\Delta H^{\circ} \approx -3$ cal mol⁻¹

Indistinguishable from thermochemical measurements

Comparison to crystallographic waters?

Thiophenesulfonamide

Benzthiophenesulfonamide

Crystallographic waters predicted by modeling

Thiophenesulfonamide

Benzthiophenesulfonamide

So: What is the Hydrophobic

- It is *not* the apposition of two non-polar surfaces with release of hydrogen-bond networks (e.g., not "lock and key" or KT)
- It might be:
 - The "shape of the water" in the binding pocket, rather than the shape of the pocket
 - The displacement of energetically unfavorable water into bulk water from active site, and release of surface water from ligand

What is Needed?

- More examples coupling structure and thermodynamics.
- For computation: better (or better justified) potential functions (for H), and much faster computation (for S)
- ITC that is more routine, and requires less protein.
- Better fundamental understanding of water and hydrophobicity
- Tests based on *protein* structure: mutagenesis
- A sound theory of molecular recognition in water

Maximal Affinity for the Binding of Small Molecule Ligands

13 macromolecules interacting with136 different ligands186 different combinations examined

Gilli, P. et al. J. Phys. Chem. 1994, 98, 1515-1518.

Kuntz, I.D. et al. PNAS 1999, 96, 9997-10002.

- Entropy-Enthalpy compensation •
- We still don't understand •

10

3

Potential energy, V (local mol-1)

 $\hat{\mathcal{T}}$

The effect of medium

- $\Delta\Delta G$ for benzo-group independent of medium
- $\triangle G$, $\triangle H$ and $-T\Delta S$ independent of anion and cation
- Urea (1M), glycine (1M) and DMSO (10%) do not effect \triangle H and –T Δ S
- Ethanol (10%) or PEG (10%) make \triangle H more favorable by ~ 1 kcal mol⁻¹ and –T Δ S less favorable by ~ 1 kcal mol⁻¹

Zhang, Cremer Curr Opin Chem Biol 2006, 10, 658

- Phil Snyder
- Matt Lockett
- VJ Krishnamurthy
- Demetri Moustakis
- Annie Heroux (Argonne National Lab)
- Woody Sherman (Schrodinger)

	$\Delta G_{\rm surf}^{\rm o'}$,	$K_{\rm d}$ 'surf,	$\Delta G^{\circ'}_{\mathrm{avidity, surf}}$,	$K_{d}^{\prime \text{avidity,surf}}$,	enhancement
	kcal mol ⁻¹	nM	kcal mol ⁻¹	nM	$(K_d^{surf} / K_d^{avidity, surf})$
HCA II (K133C, lip mutant)	-9.6 ± 0.2	89			
HCA II (E187C, tail mutant)	-9.6 ± 0.2	86			
(CA) FG	-9.3 ± 0.1	160	-11.9 ± 0.1	1.8	50 ± 14
(CA) FG	-9.4 ± 0.2	140	-12.0 ± 0.2	1.7	50 ± 20
(CA) FG	-9.3 ± 0.1	150	-12.0 ± 0.2	1.5	60 ± 20
(CA) Bh	-9.1 ± 0.1	200	-11.8 ± 0.3	2.2	40 ± 20
$(CA)_2 Rh_{back}$	-9.7 ± 0.1	78	-11.8 ± 0.1	2.3	37 ± 9

Bovine Carbonic anhydrase II

Monocyclic aromatics have similar K_d

Enthalpy not Entropy drives the increase in affinity.

Same geometry

Active site waters

Interactions w/ HP wall

Modeling local water interactions

How does the ligand affect water structure?

Add a "cap" of water molecules

Modeling local water interactions

Energy-minimize the water positions

Ligand is highly solvent-exposed

Fused ring appears to affect crystallographic water positions

Could the observed thermodynamic effect be solvent-mediated?

Results

- The fused benzo ring makes waters in contact with hydrophobic residues less enthalpically unfavorable
- 2. The waters trapped between the fused benzo ring and the polar residues become more enthalpically favorable
- The entropies of the waters solvating both F and BF ligands are similar

Aryl & alkyl: similar effects on ΔG°

So: What is the Hydrophobic Effect?

- It is *not* the apposition of two non-polar surfaces with release of hydrogen-bond networks.
- It might be:
 - Some water release
 - Some restructuring of hydrogen-bond networks

ΔΔH° and TΔΔS° are unexpected

Opposite of hypothesized effect

Hit / Lead to Drug

Capital/Return/RONA/EBITDA

Reasons for attrition

1991

2000

PMA/FDA Survey 1991, Pharmaceutical R&D Benchmarking Forum, General Metrics 2001

Enthalpic and Entropic Contributions to the Free Energy of Interaction of Two Ions

In hexane: enthalpically driven In aqueous solution with 100 mM salt: entropically driven (related to the temperature dependence of ϵ_{H_2O})

Enthalpic and Entropic Contributions to the Free Energy of Interaction of Two lons in Water

- $\Sigma \Delta H_{\text{ion-water}} > \Delta H_{\text{ion-ion}} \Rightarrow \Delta H_{\text{association}} > 0$ (unfavorable) Temperature dependence of ε is a measure of the strength of ion-dipole interaction
- $\Delta S_{association} > 0$ (favorable) due to solvent release
Cooperativity in Proton Binding: Charge Regulation

Ionization constant of a group is influenced by the charge states of neighboring groups

Electrostatics in Proteins: Network of Charges

Charge Compensation: ionization state of one group alters the ionization state of another via "local pH" or " pK_a "

Regions of multiple dielectrics: $(\epsilon(H_20) = 80; \epsilon(\text{protein core}) = 2-5; \epsilon(\text{boundary layer } H_2O) = 10-15)$

Conformational changes/binding of ligand alters the dielectric cavity

Electrostatic map of HCA I with sulfonamide ligand

Protein Plasticity: Ligand-Induced Conformational Change of Receptor

Unliganded E. coli biotin carboxylase. PDB code 1BNC

Ligand Induced Conformational Change of Receptor

E. coli biotin carboxylase bound to ATP. PDB code 1DV2

E. coli biotin carboxylase unliganded (left) and bound to ATP (right) PDB codes 1BNC, 1DV2

Plasticity in Proteins

Cooperativity is observed between residues in DHFR separated by large distances.

In *E. coli* DHFR, mutations of Gly-121 and Met-42 have a synergistic effect upon enzyme catalysis.

Effect of mutations	upon enzyme	kinetics
---------------------	-------------	----------

	Gly-121	Gly-121-Val
Met-42	100%	0.5%
Met-42-Phe	67%	0.34% (expected) 0.017% (measured)

Benkovic, S.J. and Hammes-Schiffer, S. Science 2003, 301, 1196-202.

Enthalpy/Entropy Compensation: Theoretical Model

Dunitz, J. *Chem. Biol.* **1995**, *2*, 709-712. Williams, D.H. and co-workers *Angew. Chem. Int. Ed.* **2004**, *43*, 6596-6616.

The Zeta Potential of Polyethylene

- Observation: the surface of polyethylene in contact with neutral water is negatively charged.
- Interpretation: OH- associates preferentially with non-polar interfaces.
- Relevance: Much/most of molecular recognition is the hydrophobic effect.
- Origin: Who knows?

Polyethylene (or any other low

Dielectric constant matter (liquid, solid, vapor)

- Charge in a dielectric cavity?
- Hydrogen-bond Network?
- Enthalpy/Entropy?

Carbonic Anhydrase: A Model Protein

- Commonly used model protein for physical-organic studies
- Stable $(T_m = 65 °C)$
- Monomeric, 30 kDa
- No disulfide bonds
- Structure is dominated by 10 βsheets
- Zn(II)-OH cofactor in active site
- Function: CO₂ hydration
- Binding of sulfonamide inhibitors is well-characterized

