Advanced Chemical Biology (Fall 2020)

Professors:

朱忠瀚 John Chu <u>johnchu@ntu.edu.tw</u>

Department of Chemistry, NTU, Rm A521, (02) 3366-8654

牟昀 Kurt Mou <u>ymou@ibms.sinica.edu.tw</u> (guest lecturer)

Institute of Biomedical Sciences, Academia Sinica

Classroom: Department of Chemistry, NTU, Rm 121 Hours: Mon. 13:20 – 15:10, Thu. 13:20 – 15:10

Language: English (lectures, exams, and student presentations shall all be given in English)

Students must also answer exam questions in English

Grading: Midterm exam 35%; Final exam 35%; Presentation 15%; In-class quizzes 10%; Discussion 5% Prerequisite: Everyone enrolled in this class should have taken undergraduate level biochemistry. Some

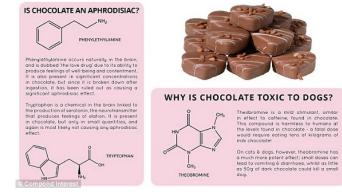
background information from basic biochemistry will be provided in the lectures. Undergraduate students can enroll only if they have already taken (and passed) biochemistry.

Course Syllabus (check CEIBA website for updates)

#	Date	Day	Topic ^[1]	Note
1	09/23	Thu.	What is chemical biology?	
2	09/27	Mon.	Experiments relevant to understanding the origin of life	
3	09/30	Thu.	Guest Lecture: CRISPR technologies	Kurt Mou
4	10/04	Mon.	Nucleobase, nucleoside, and nucleic acid	Paper discussion
5	10/07	Thu.	Guest Lecture: CAR-T technologies	Kurt Mou
6	10/11	Mon.	National Day	No class
7	10/14	Thu.	Nucleic acid mimics + Quiz: nucleic acid structures [2]	
8	10/18	Mon.	DNA sequencing technologies	Discussion 1 [3]
9	10/21	Thu.	RNA, aptamers, ribozymes, and directed evolution	
10	10/25	Mon.	Classic directed evolution experiments and recent advances	Discussion 2 [3]
11	10/29	Thu.	Amino acids, peptides, and proteins	
12	11/01	Mon.	Ribosome and protein translation + Quiz: amino acid structures [2]	
13	11/04	Thu.	Protein degradation and misfolding	Discussion 3 [3]
14	11/08	Mon.	Mid-term week	No class
15	11/11	Thu.	MID-TERM EXAM [4]	No class
16	11/15	Mon.	Incorporate noncanonical amino acids into proteins	
17	11/18	Thu.	Carbohydrates and lipids	Discussion 4 [3]
18	11/22	Mon.	Carbohydrates and lipids	
19	11/25	Thu.	Secondary metabolites 1	
20	11/29	Mon.	Secondary metabolites 2	

21	12/02	Thu.	Please attend KT Wang Lectures (TBD) [5]	No class
22	12/06	Mon.	Bioconjugation chemistry	Discussion 5 [3]
23	12/09	Thu.	Fluorescent dyes and proteins	
25	12/13	Mon.	Super-resolution fluorescence imaging Electron microscopy	
26	12/16	Thu.	Analytical technologies for biomaterials	Discussion 6 [3]
27	12/20	Mon.	Student presentation 1 [6]	
28	12/23	Thu.	Student presentation 2 [6]	
29	12/27	Mon.	Student presentation 3 [6]	
30	12/30	Thu.	TBD	
32	01/03	Mon.	Final week	No class
16	01/06	Thu.	FINAL EXAM [4]	

Notes:


- [1] PowerPoint slides and assigned reading materials will be uploaded to CEIBA (ceiba.ntu.edu.tw) course website.
- [2] There will be a short quiz (no more than 5 questions) after each class. Quizzes on 10/14 and 11/11 will ask you the chemical structures of nucleic acids and amino acids, respectively.
- [3] Paper discussion sessions will be held about every 2 weeks. You should read the assigned papers *before* the discussion sessions.
- [4] You will be allowed to write notes on a piece of A4 paper and bring it to the mid-term and final exams.
- [5] KT Wang Bioorganic Chemistry Lecture (王光燦生物有機化學講座) usually features great talks; content of the lecture will be included in the final exam. The exact date has not been announced; we will move our class around for the lecture.
- [6] Student presentations have a *strict 5 min. limit*. You should *a*) make and present a 1-slide infographic and *b*) provide a short quiz about your presentation. *I will select a few questions to include in the final exam*. Check out the following link and examples.

http://www.compoundchem.com

https://www.foodprocessing.com/articles/2014/infographic-chemistry-of-food/

 $\underline{https://www.distillerytrail.com/blog/chemistry-inside-tiny-champagne-bubbles-infographic/distillerytrail.com/blog/chemistry-inside-tiny-champagne-bubbles-infographic/distillerytrail.com/blog/chemistry-inside-tiny-champagne-bubbles-infographic/distillerytrail.com/blog/chemistry-inside-tiny-champagne-bubbles-infographic/distillerytrail.com/blog/chemistry-inside-tiny-champagne-bubbles-infographic/distillerytrail.com/blog/chemistry-inside-tiny-champagne-bubbles-infographic/distillerytrail.com/blog/chemistry-inside-tiny-champagne-bubbles-infographic/distillerytrail.com/blog/chemistry-inside-tiny-champagne-bubbles-infographic/distillerytrail.com/blog/chemistry-inside-tiny-champagne-bubbles-infographic/distillerytrail.com/blog/chemistry-inside-tiny-champagne-bubbles-infographic/distillerytrail.com/blog/chemistry-inside-tiny-champagne-bubbles-infographic/distillerytrail.com/blog/chemistry-inside-tiny-champagne-bubbles-infographic/distillerytrail.com/blog/chemistry-inside-tiny-champagne-bubbles-infographic/distillerytrail.com/blog/chemistry-inside-tiny-champagne-bubbles-infographic/distillerytrail.com/blog/chemistry-inside-tiny-champagne-bubbles-infographic/distillerytrail.com/blog/chemistry-inside-tiny-champagne-bubbles-infographic/distillerytrail.com/blog/chemistry-inside-tiny-champagne-bubbles-infographic/distillerytrail.com/blog/chemistry-inside-tiny-champagne-bubbles-infographic/distillerytrail.com/blog/chemistry-inside-tiny-champagne-bubbles-infographic/distillerytrail.com/blog/chemistry-inside-tiny-champagne-bubbles-infographic/distillerytrail.com/blog/chemistry-inside-tiny-champagne-bubbles-infographic/distillerytrail.com/blog/chemistry-inside-tiny-champagne-bubbles-infographic/distillerytrail.com/blog/chemistry-inside-tiny-champagne-bubbles-infographic/distillerytrail-distillerytrail-distillerytrail-distillerytrail-distillerytrail-distillerytrail-distillerytrail-distillerytrail-distillerytrail-distillerytrail-distillerytrail-distillerytrail-distillerytrail-distillerytrail-distillerytrail-distillerytrail-dis$

THE CHEMISTRY OF CHOCOLATE

THE CHEMISTRY OF COFFEE

