TIGP - CBMB

2022 Experimental Molecular Biophysics

Time: Tuesdays 14:00-17:00 Place: R208 of the Institute of Biological Chemistry, Academia Sinica Credit: 3 credits Coordinator: Dr. Wei-Yuan Yang Instructors: Dr. Joseph Jen-Tse Huang (IoC), Dr. Su-Chang Lin (GRC), Dr. Wei-Yuan Yang (IBC), Dr. Hsin-Yung Yen (IBC) TA: Kareem Isaac Daniels

Perspective:

A holy grail in biology is to modulate the functions of bio-molecules. For example, one wants to design small compounds to perturb the form and activities of bio-molecules for disease intervention (*e.g.*, inhibition of protein aggregation for treating neurodegenerative diseases). These pursuits will not be possible without proper knowledge (*e.g.*, structure, function, composition, interactome, localization) of the bio-molecules at hand. This course will give you a first-hand look at the many biophysical techniques that allow you to characterize your biomolecule of interest through lectures, facility visits, hands-on sessions, and designed presentations.

Grading scheme:

25% for each module

- Topic A Spectroscopy and Solution Biophysics
 - Class participation: 10%
 - Presentation: 15%
- Topic B Imaging
 - Class participation: 15%
 - ♦ In-class quiz: 5%
 - Presentation: 5%
- Topic C Crystallography
 - Accomplishments in hands-on training: 20%
 - Responding to teacher's questions: 5%
- Topic D Mass Spec
 - Class participation: 10%
 - ♦ Hands-on: 5%
 - Presentation: 10%

*Asking questions for bonus points

Attendance:

- Late: -1 of the final grade (attend after 14:00 will be considered late)
- Absence: -3 pts of final grade (did not contact the TAs or the program secretary before class)
- Absence without supporting document: -1 of the final grade

Schedule

Date	Topic A: Spectroscopy and Solution Biophysics	
	This module is to lecture on general spectroscopy techniques for	
	peptides, proteins, and protein-protein interactions. The techniques	
	to be covered include fluorescence, circular dichroism, infrared	Instructor
	spectroscopy, fluorescence life-time imagiangetc. Topics on	
	protein misfolding and therapeutic strategies against protein	
	misfolding will be introduced.	
2/15	A1: Principle of spectroscopy and protein misfolding (peptide	
	synthesis, CD, fluorescence, and infrared spectroscopy)	
	A2: Theraputic strategies against protein misfolding	
2/22	(nanoparticle preparation, fluorescence life-time imaging,	
	Fluorescence recovery after photobleaching)	Dr. Joseph Jen-Tse
0.14	A3: Hands-on experiments (peptide synthesis, CD, fluorescence	Huang
3/1	imaging)	
	A4: Student Presentation (present related studies on protein	
3/8	misfolding or therapeutic strategy against protein misfolding	
	diseases)	
Date	Topic B: Imaging	
	This module will take you into the world of bio-imaging. We will	
	help develop your intuition on bio-imaging, show you what	Instructor
	microscopes there are on campus, and go through various	
	imaging tricks that can help advance your research.	
3/15	B1: Fun facts of imaging: distribution, resolution, and	
	contrast mechanisms	
3/22	B2: The many types of fluorescence microscopes (Hands-on	
	session: using a confocal microscope)	Dr. Wei Yuan Yang
3/29	B3: Inside image quantification (Hands-on session: playing with	Di. Wei Tuan Tung
	ImageJ. //personal laptop required)	
4/12	B4: Case study: spatial genomics- transcriptomics through	
	imaging (short student presentations)	

Date	Topic C: Crystallography	
	This module is to lecture on the techniques for single-crystal X-ray	
	diffraction and its applications and limitations. We will also use	Instructor
	lysozyme as a model protein to go through the steps of protein	
	crystallization, X-ray data collection and analysis	
4/19	C1: Protein crystallization	
	Hands-on training: Hanging-drop protein crystallization	
4/26	C2: Why X-ray crystallography?	
	Hands-on training: Crystal mounting	Dr. Su-Chang Lin
5/3	C3: Principle of X-ray diffraction	
	Hands-on training: X-ray diffraction	
5/10	C4: Data analysis	
	Hands-on training: Data analysis	
Date	Topic D: Mass Spec	
	The goal of this module is to introduce the principle of mass	
	spectrometry (MS) and the progress made in technological	
	development. The application of MS for a range of	Instructor
	biology/pharmaceutics studies and its emerging utility in	
	investigating protein structures and dynamics will be further	
	discussed.	
5/17	D1: History and basis of mass spectrometry	
5/24	D2: The application of mass spectrometry in "mocis" studies	
	Hands-on session: Instrumentation and data analysis)	Dr. Hsin-Yung Yon
5/31	D3: State-of-the-art mass specteometry in investigating	
	structural and dynamical property of protein molecules	
6//7	D4: Student presentation/Special talk	