TIGP - CBMB

2023 Experimental Molecular Biophysics

實驗分子牛物物理學

Time: 2:00 pm ~ 5:00 pm on Tuesdays

Place: R208 of the Institute of Biological Chemistry, Academia Sinica

Credit: 3 credits

Coordinator: Yun-Ru (Ruby) Chen

Instructors: Yun-Ru (Ruby) Chen 陳韻如 (GRC), Kuen-Phon Wu 吳昆峯 (IBC),

Su-Chang Lin 林世昌 (GRC), Wei-Hau Chang 章為皓 (IoC),

TA: upon the assignment for each module

Perspective:

The purpose of this class is to introduce different biophysical techniques and their possible applications. We will address how to combine different techniques in tackling specific biological issues. We will address how to combine different techniques in tackling specific biological issues.

Grading scheme:

25% for each module (Details will be announced at each module)

- Topic A: Spectroscopy and Solution Biophysics
- Topic B: NMR
- Topic C: Crystallography
- Topic D: CryoEM

Attendance:

Unexplained absence: -3 of final grade

(did not send notice to the TA or the program secretary before class)

Late: -1 of the final grade

Absence without supporting document: -1 of final grade

(if a student did not inform the course TA or the program secretary, Ms. Vicki Huang (vicki0315@gate.sinica.edu.tw) to excuse him/herself from the class before lecture starts, he/she has to provide proof to Ms. Huang to explain his/her absence to the class.)

Schedule

	Topic A: Spectroscopy and Solution Biophysics	
Date	This module is to lecture on general spectroscopy techniques for	Instructor
	proteins and protein-protein interactions. The techniques to be	
	covered include fluorescence, circular dichroism, infrared	
	spectroscopy, surface plasmon resonanceetc. Topics on protein	
	folding and misfolding will be introduced.	
2/14	A1: Principle of spectroscopy and protein folding	Dr. Yun-Ru Ruby Chen
2/21	A2: Principle of solution biophysical techniques and protein	
	misfolding	
3/7	A3: Hands-on experiments	
3/14	A4: Student Presentation	
Date	Topic B: NMR	Instructor
	B1: The physical basics and biology	
3/21	Basics of NMR spectroscopy	
3/21	NMR biomolecules preparation	Dr. Kuen-Phon Wu
	Limitation of this technique	
3/28	B2: The structure and interaction network	
	Biomolecular structures determined by NMR	
	 NMR-based protein-protein or protein-ligand interactions 	
4/11	B3: Data visualization and molecular viewer	
	NMR data visualization	
	PyMOL tutorial (computer needed)	
	2-3PM visit High Field NMR center	
4/18	B4: Presentation and visit NMR facility	
	Discussion and presentation of provided NMR papers	
	Visit NRBP NMR core facility and practice of data collection	
	(2-3:30 PM)	

	Topic C: Crystallography	
	This module is to lecture on the techniques for single-crystal X-ray	
Date	diffraction and its applications and limitations. We will also use	Instructor
	lysozyme as a model protein to go through the steps of protein	
	crystallization, X-ray data collection and analysis	
4/25	C1: Protein crystallization	
	Hands-on training: Hanging-drop protein crystallization	
5/9	C2: Why X-ray crystallography?	
	Hands-on training: Crystal mounting	Dr. Su-Chang Lin
5/16	C3: Principle of X-ray diffraction	Di. Su-Chang Lin
	Hands-on training: X-ray diffraction	
6/20	C4: Student presentation / Special Talk	
	Hands-on training: Data analysis	
Date	Topic D: CryoEM	Instructor
5/23	D1: The basics of TEM and why electrons	
5/30	D2: The revolution: single particle, tomography and electron	Do Mai Hay
	diffraction	Dr. Wei-Hau
6/6	D3: Processing softwares: Principles and Practices	Chang
6/13	D4: Issues on getting publishing cryo-EM paper.	