TIGP - CBMB

1122 Semester

Experimental Molecular Biophysics

實驗分子生物物理學

Time: 2:00 pm ~ 5:00 pm on Tuesdays

Place: R208 of the Institute of Biological Chemistry, Academia Sinica

Credit: 3 credits

Coordinator: Dr. Wei-Yuan Yang

Instructors:

Dr. Joseph Jen-Tse Huang (IoC), jthuang@gate.sinica.edu.tw

Dr. Su-Chang Lin (GRC), tomlin@gate.sinica.edu.tw

Dr. Wei-Yuan Yang (IBC), weiyang@gate.sinica.edu.tw

Dr. Hsin-Yung Yen (IBC), hsinyungyen@gate.sinica.edu.tw

TA: Ananay Sharma, sharma.ananay1997@gmail.com

Perspective:

A holy grail in biology is to modulate the functions of bio-molecules. For example, one wants to design small compounds to perturb the form and activities of bio-molecules for disease intervention (e.g., inhibition of protein aggregation for treating neurodegenerative diseases). These pursuits will not be possible without proper knowledge (e.g., structure, function, composition, interactome, localization) of the bio-molecules at hand. This course will give you a first-hand look at the many biophysical techniques that allow you to characterize your biomolecule of interest through lectures, facility visits, hands-on sessions, and designed presentations.

Grading scheme:

25% for each module (Details will be announced at each module)

- Topic A: Spectroscopy and Solution Biophysics
 - ◆ 15% in-class participation
 - 10% oral presentation
- Topic B: Imaging
 - 15% in-class participation
 - 5% quiz
 - 5% oral presentation
- Topic C: Crystallography
 - 1. Accomplishments in hands-on training and finish the oral presentation in the week 4: a max of 5 of final grade/week
 - 2. Responding to teacher's questions: a max of 1 of final grade/week

- 3. Hard worker or good results in hands-on training: a max of 1 of final grade
- 4. No-shows get 3 of the final grade/week. (You will not have a second chance)
- 5. COVID, RSV, or Flu positive (Please do not come. You need a proof.) get 5 of final grade for that week.
- Topic D: Mass Spec

Class participation: 15%

Presentation: 10%

Attendance:

Students who need to take leave should contact the course TA and the program secretary, Ms. Vicki Huang (vicki0315@gate.sinica.edu.tw) with proper reason and proof before the lecture starts. If not, will be considered an unexplained absence and may cause a deduction from the grade.

Schedule

	Topic A: Spectroscopy and Solution Biophysics	_
Date	This module is to lecture on general spectroscopy techniques for	
	peptides, proteins, and protein-protein interactions. The	
	techniques to be covered include fluorescence, circular dichroism,	Instructor
	infrared spectroscopy, fluorescence life-time imagiangetc.	
	Topics on protein misfolding and therapeutic strategies against	
	protein misfolding will be introduced.	
0/00	A1: Principle of spectroscopy and protein misfolding (peptide	
2/20	synthesis, CD, fluorescence, and infrared spectroscopy)	
2/27	A2: Theraputic strategies against protein misfolding	
	(nanoparticle preparation, fluorescence life-time imaging,	
	Fluorescence recovery after photobleaching)	Dr. Joseph Jen-Tse
2/5	A3: Hands-on experiments (peptide synthesis, CD, fluorescence	Huang
3/5	imaging)	
	A4: Student Presentation (present related studies on protein	
3/12	misfolding or therapeutic strategy against protein misfolding	
	diseases)	
	Topic B: Imaging	
	This module will take you into the world of bio-imaging. We will	
Date	help develop your intuition on bio-imaging, show you what	Instructor
	microscopes there are on campus, and go through various	
	imaging tricks that can help advance your research.	
3/19	B1: (A) Why imaging? (B) Contrast mechanisms.	
3/26	B2: (A) Resolution. (B) Intro to the many types of	
	fluorescence microscopes (Hands-on session: using a confocal	
	microscope).	
4/2	B3: (A) Optical-control of biomolecules. (B) Inside image	Dr. Wei Yuan Yang
	quantification (Hands-on session: playing with ImageJ.	
	//personal laptop required)	
4/9	B4: Case study: spatial biology- omics through imaging (in	
4/9		

	Topic C: Crystallography	
Date	This module is to lecture on the techniques for single-crystal	
	X-ray diffraction and limitations. We will also use lysozyme as	
	a model protein to go through the steps from protein	
	crystallization to X-ray data collection.	
4/16	C1: Protein crystallization	
	Hands-on training: Hanging-drop protein crystallization	
4/23	C2: Why X-ray crystallography?	Dr. Su-Chang Lin
	Hands-on training: Crystal mounting	
4/30	C3: Principle of X-ray diffraction	
	Hands-on training: Manual X-ray diffraction	
5/7	C4: How X-ray crystallography may help your research?	
	(Student presentation)	
Date	Topic D: Mass Spec	Instructor
	The goal of this module is to introduce the principle of mass	
	spectrometry (MS) and the progress made in technological	
	development. The application of MS for a range of	
	biology/pharmaceutics studies and its emerging utility in	
	investigating protein structures and dynamics will be further	
	discussed.	
5/14	D1: History and basis of mass spectrometry	
5/21	D2: The application of mass spectrometry in "mocis" studies	
	(Hands-on session: Sample preparation for protein identification)	Dr. Hsin-Yung Yen
5/28	D3: State-of-the-art mass spectrometry in investigating	
	structural and dynamical property of protein molecules	
6/18	D4: Student presentation (Hands-on session: data analysis)	